4. Y. Fang, L. Meng, A. Prominski, E.N. Schaumann, M. Seebald, B. Tian, Recent advances in

bioelectronics chemistry, Chem. Soc. Rev. 49 (2020) 7978–8035. 10.1039/d0cs00333f.

5. Y. Chen, Y. Zhang, Z. Liang, Y. Cao, Z. Han, X. Feng, Flexible inorganic bioelectronics, Npj

Flex. Electron. 4 (2020) 1–20. 10.1038/s41528-020-0065-1.

6. K. Feron, R. Lim, C. Sherwood, A. Keynes, A. Brichta, P.C. Dastoor, Organic bioelectronics:

Materials and biocompatibility, Int. J. Mol. Sci. 19 (2018) 1–21. 10.3390/ijms19082382.

7. A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, J.A. Rogers, Transfer printing techniques for

materials assembly and micro/nanodevice fabrication, Adv. Mater. 24 (2012) 5284–5318. 10.

1002/adma.201201386.

8. S. Inal, J. Rivnay, A.O. Suiu, G.G. Malliaras, I. McCulloch, Conjugated polymers in bioe­

lectronics, Acc. Chem. Res. 51 (2018) 1368–1376. 10.1021/acs.accounts.7b00624.

9. N.P. Shetti, S.D. Bukkitgar, K.R. Reddy, C.V. Reddy, T.M. Aminabhavi, ZnO-based nanos­

tructured electrodes for electrochemical sensors and biosensors in biomedical applications,

Biosens. Bioelectron. 141 (2019) 1–12. 10.1016/j.bios.2019.111417.

10. M.L.M. Napi, S.M. Sultan, R. Ismail, K.W. How, M.K. Ahmad, Electrochemical-based bio­

sensors on different zinc oxide nanostructures: A review, Materials (Basel). 12 (2019) 1–34.

10.3390/ma12182985.

11. E. Guerrero, A. Polednik, M. Ecker, A. Joshi-Imre, W. Choi, G. Gutierrez-Heredia, W.E.

Voit, J. Maeng, Indium–gallium–zinc oxide schottky diodes operating across the glass

transition of stimuli-responsive polymers, Adv. Electron. Mater. 6 (2020) 1–8. 10.1002/

aelm.201901210.

12. G. Malliaras, M.R. Abidian, Organic bioelectronic materials and devices, Adv. Mater. 27

(2015) 7492. 10.1002/adma.201504783.

13. J. Tropp, J. Rivnay, Design of biodegradable and biocompatible conjugated polymers for

bioelectronics, J. Mater. Chem. C. 9 (2021) 13543–13556. 10.1039/d1tc03600a.

14. K. Svennersten, K.C. Larsson, M. Berggren, A. Richter-Dahlfors, Organic bioelectronics in

nanomedicine, Biochim. Biophys. Acta – Gen. Subj. 1810 (2011) 276–285. 10.1016/j.bbagen.

2010.10.001.

15. E. Macchia, L. Torsi, Organic biosensors and bioelectronics, in: P. Cosseddu, M. Caironi

(Eds.), Org. Flex. Electron., Woodhead Publishing, 2021: pp. 501–530. 10.1016/B978-0-12-

818890-3.00017-5.

16. F. Fu, J. Wang, H. Zeng, J. Yu, Functional conductive hydrogels for bioelectronics, ACS Mater.

Lett. 2 (2020) 1287–1301. 10.1021/acsmaterialslett.0c00309.

17. D. Ohayon, S. Inal, Organic bioelectronics: From functional materials to next-generation

devices and power sources, Adv. Mater. 32 (2020) 2001439. 10.1002/adma.202001439.

18. E. Cuttaz, J. Goding, C. Vallejo-Giraldo, U. Aregueta-Robles, N. Lovell, D. Ghezzi,

R.A. Green, Conductive elastomer composites for fully polymeric flexible bioelectronics,

Biomater. Sci. 7 (2019) 1372–1385. 10.1039/C8BM01235K.

19. S. Hara, T. Zama, W. Takashima, K. Kaneto, Artificial muscles based on polypyrrole ac­

tuators with large strain and stress induced electrically, Polym. J. 36 (2004) 151–161. 10.1295/

polymj.36.151.

20. C. Cui, N. Faraji, A. Lauto, L. Travaglini, J. Tonkin, D. Mahns, E. Humphrey, C. Terracciano,

J.J. Gooding, J. Seidel, D. Mawad, A flexible polyaniline-based bioelectronic patch, Biomater.

Sci. 6 (2018) 493–500. 10.1039/C7BM00880E.

21. S. Uzunçar, L. Meng, A.P.F. Turner, W.C. Mak, Processable and nanofibrous

polyaniline:polystyrene-sulphonate (nano-PANI: PSS) for the fabrication of catalyst-free

ammonium sensors and enzyme-coupled urea biosensors, Biosens. Bioelectron. 171 (2021)

112725. 10.1016/j.bios.2020.112725.

22. R. Antiochia, C. Tortolini, F. Tasca, L. Gorton, P. Bollella, Graphene and 2D-Like nanoma­

terials: Different biofunctionalization pathways for electrochemical biosensor development,

in: A. Tiwari (Ed.), Graphene Bioelectron., Elsevier Inc., 2018: pp. 1–35. 10.1016/B978-0-12-

813349-1.00001-9.

32

Bioelectronics